
-ç

AD—A062 856 CARNEGIE MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ——Etc rrn q12
TA RtAN. LANGUAGE DESIGN FOR THE IRONMAN REQUIREMENT: REPERENcE ——ETCtU)
JUN 78 M SHAM . P HILFINGER, W A . WULF P44620—734—0074

UNCLASSIFIED CS 3 SR tR 8 11 _

.~

1~0 i~: I~
__________ I.. 13 15 122

a. .— U
3.5

N 2 O1•1 e

* q1
hhhIiHI12~

• 00

i

- C.3

I
CII LJ -CS-78-X33

• TARTAN

Language Deagn for the fronman Requrement
Reference Manual

Mary 9iaw
Psi I4lfla~sr
Wm A. Wii(

Computer Sci.nce Ospariment
Cans~ls—MsIlae UnIv.I I*Iy

Pfttabur~h, Pa. 15213

Jiaie, 1S71

Abstract Tartan is an .xpsrlmsnt in sn~uqe design. The gesi was to determine whether
a simpl. language coiid reset i stantiaUy sit of the fra ,vnan rppiremsnt for a common
high-order progranviing language.

We undertook tPO expsnmsnt becsuas we bsiirved that dl the designs done In the fi rst
phasi of the DCC effort were too large and toe comp4ex. We saw that complexity as a
s.rlous failure of the designe. excise complexity in a prsgr wing Iangusg. can interfere with
its UiSó even to the extant that any benefiad propartl.s are of 11th conse~~~nce We wanted

• to find mat whether the repiremsnts inharantiy lead to such complexity or whether a
• aubotantidly .mplor language wsid imatfice.

Three groimd rUes ~~~v. the experimen t Fsrst, rio more than two months — April 1 to
May 31 -- woutd bs devoted t~ the prs~ect Second, the language woiid meet all the
lroxwnsn rsqir ,ments sxcept far a few points at which it wosid anUcapate Steel man
reqjrements. Further, the language wmid contain no .xtr a tu ba s. mliii they rssiited in a
simpler language. Third, simplicity wouid be the uverrising objective.

The nuuitlng Iampaage, Tartan, is based on all available information, incluofeg the designs
already proo.icet Ti~ai language deflr.tlon is presented Piersi a cainparwon report provides on
overview of the lang~~ s~ a ruiibsr of exwiplei, and more expository explanations of some of
the langusqe tiabs es.

We belays that Taitin is a shstrtid improvement over the sailer designs, pirtlaiarfy in
its simptisity. There is, of ewe, no obj ective moamru of .mplicity, but the syntax , the size
of the defiribom, and this maober of ~.ncapts reqired as all smaller in Tartw.

Moreover, Tartan substantially meets all of the lrevwiian reqiremsnt (The exceptions lie in a
few places whers we anticipated Staelm.n reeirements and where detail s are still missing
from b~s report) TPsie, we believ, that a simple language can meet the freemen reeiremsnt.

f . Tartan is an einslenca pr oof of that.
r We mast .ffifr4sizs again that this effort Ii an axparlaae~ not an attempt to compete with

000 contractors. Tartan ix, hawevor, an ~~~ ci~~l~~~ t~ t~i. pt~~. ~language can be at least Pie sipplel Can yma do bitter?

TPis wor k was supported by the Defense Advanced Research Proj ects Agency under contract
F44620- 73-C-0074 (moritored by the Air Forts Office of Scientific RseearcPi)~

~~— ~ -~~• ~~~~-~~~ —— —— -•~~----—~~ •

Tartan Reference Memasi

1. Basic Concep ts and Philosophy 1
2. Basic Structures 3

2.1. Pr imitIve Expressions 3
2.2. identIfiers 4
2.3. Lexical Considerations 5

3. Express ions S
3.1. Invocations 7
3.2. Dynemic Allocation 8

4. Statements S
4.1. Blocks 9
4.2. Sequenced Statement. 9
43. Asaignmant Statement 9
44. Co,dtlonat Statements 10
4.5. Loop Statements 11
4.6. Uncordtlonal Control Transfer 11
4.7. Excapt lons 11
4.8. Par allel Process Contro l 12

S. Types 13
5.1. Scat ar Typos 13
5.2. Composite Structures 13
5.3. DynamIc Types 14
5.4. Process Control Types 14
5.5. Defined Types 14

6. Osfini tlons and Dedarsllens 15
6.1. DeclaratIons 15
6.2. Moóat.e 16
6.3. RoutInes 16
6.4. Exceptions 16
6.5. Type Defi nitions 17
6.6. Generic Defiritloris 17
6.7. Translation issues 18

I. Standard Defini tIons 11
I. 1. System-Dependent Chsrsctsristics 19
1.2. Properties of Types 19

1.2.1. Fixed 19
1.2.2. Float 19
1.2.3. Emimeratlons 19
1.2.4 Boolean 20
1.2.5. Characters 20
1.2.6 Latches 20
1.2.7. Arrays 20
1 2.8. Sets 20
1 2.9. DynamIc Types 20
1.2.10. Records 20
1.2.11. VarIan ts 21
12.12. StrIngs
1.2. 13. Activations 21
1.2.14 Actnamss . 21
1.2.15. Files 21

1.3. Alphebats 21
11. Collected Syntax 22

L _ _ -~~~~~~~~

- -.-——..“—‘—.-..‘—

Tartan Reference Msmael -1-

1. Basic Concepts and Philosophy

A progrsm Is a piece of text that describes a sequence of actions intended to affect a computation
The process of ‘executing a pro$ram to obtate this affect I. called elaboration of the text.1

Progranvmng languages are used for ccmauicatlng programs, both between people and between
people and machines. Although the program text is static, the concepts being communicated are
dyna mic. This dynamic nature of a computation can make it dfficiit to communicate the ideas
underlying a program , and especially to conmujnicat these Ideas between people. To expeof ti the
coewnianscatlon, we Impose structur e an the way languages are used. Although UI, struc ture rsstr lcts
what can be writt en, it re.its In regiiar patterns for expressing decisions. The hemsn reeder benefits
from this by developing expectation. about how thee. ides. will be expressed.

Pro gram ming languages encourage the Imposition of structure by provdng notations for the
structures whose use their designers wish to p.11mota. ~aing th. process of language design, our
beliefs about progr amming methodology and the state of language processing technology lead us to
formulate concepts and struct ur al rules. We then eslect syntactic forms and struct ur ing featur.s to
emphasize these concepts. We expect that this wIll simplify the task of describing programs with the
attributes we view as good structure and that progranri rs will, as a result, be encoij sg.d to
organize their programs tile way.

We alstlngiish three dominant structij es in Tartan progra m. (1) the lexical structure, which
organizes the static program text, (2) the ~.M,.l structure, which organizes the dynamic execution, and
(3) the date structure, which organizes the Information en which con~pi4ations are performed

- Lexical structure Is a property of the program text. Programs are alvided hierarchically Into
sections, called lexical scopes, that share i,Wormetlon about data. Scope determines the
interpretation of identifiers, so all th, text in a siven lexical scope shares the same
vocabulary — dsflratlone, variables, etc. Scope rides permit some identlflsrs to be used with
the same interpretation in several lexical scopes.

- The control structure of the program determines the order In which it. statements are
executed

- The structure imposed on data involves the concepts of type, values, and variables.
Ultlmetaly, computations are performed on valuon we take that notion to be prifeltlvar vuluss
exist, end each Pies exactly on. type, which determine, the legal operations on the value.
Valuss are stored In vertabl es, which are ebjeets proatxed by sleboratlng typ. definitions.
Variables, toe~ Piave typesi these types determine the sets of values that may legally be
stored in the variables.

These fundamental struck,es interact in a ruiiber of ways. Two major interactio ns appear a. the
concepts of ordeal and blndIng~ The central and lexical *uctrwss ln4~~ad to deter mine extent Th.
extant of a variable Is Its lifetime — the time ~,lng which It affects or Is affected by the elaboration
of the program. Binding rides are invok d by boUt lexical aid control structure s they associate
identifiers with program entitles (objects, modules, railnea, types, labels, and exceptions).

In Tartan, program, are composed of dsSiilV.sss, dedarotless, end executable statements. A
definition bind. an Identifier to a media, re.~ne (preeeö.a’s, tunc tlen, or process). type, or exception;
It Is processed di~ teg translation. A declaration binds an Identifier to an .bj .~t (1..., e var iable or
value); It Is processed at nm time, usually t~ allocite ,to.a~.. Executab l, statements era elaboratsd at
run ti me t effect actual comput ations — meilpidatlon of vakeis.

Lexical struct ur e Is Imposed on Tartan programs by blocks and modules, which delimit lexical
scepes. These scopes mey be nested arbitrarily. Both constructs may u.s Identifiers defined In other
scopes both may define Identifiers that can be used in oUter sc:ist Biocks and mootis. differ only

1W, use tfis word &abcraticn In preference to exa~~ en”~ Is carviot. actions taken during
translation as well as osing execution Daboratlan may be theia~~ of an an IdedIZS4 direct •xecutlon
of the textual version of the program.

I ~~
-

_ _ _

_

_ _ _______ _____ _____ ~ - -~~- — :
~~~~~~~~.



—P— 
- - - —

Tartan Reference Mem.sal -2-

In thei r scop, rides and In their effects on the extent of variables. Tartan has two scope rides.

- An open scope Inherits (Imports automatically) all the identifiers that are defined in Its
end oe.ng scope It may not export any Identifiers. Blocks ar e open scopes except when
used as routine bodies.

- A dosed scope inherits all Identifiers that are defined in its enclosing scope except those for
labels and non,.,a&sst objects.1 It may expllcltiy import identi fiers for objects, provided they
have global extant Al modules ar. dosed scopes, as are blocks when they are used a.
routine bodies. A dosed scope that I. a mactie may exper t Identifiers that name variables,
moctiss, routines, types, or exceptions.

Identifiers that are exported from en ivwier scop. ar imported from an outer scope have the stab a of
id.ntl tlers defined in the scope Redefinition of identifiers within a scope I. not permitted; however,
thi s does not prohi bit overloading of routine names. In addition, the same Identifier may be Imported
with differe nt meanings from two different scopes. ~ ich identifiers are qjallfled with the names of the
Thocties In which they were defined; thee they are not duplicate definitions. BlinlIarty, :Iterals and
constructors are ~~sllfIed with their type, to prevent ambigUty. In either case, the module or type
~.miiflas may be omitted if no ambigtity ar ises.

In Tartan, extent is controlled exckislvsly by blocks. Only instantiat ed objects (variables, constants)
hav, extant Variables are instanti ated by the elaboration of ded erstions (for named var iables) and by
explicit construction of variables having dynamic types (dynamically created variables). Named
variables have extent coincident with the ssraunding biodi. Dynamically crested variables have extent
coincident with th. block contening the definitions of their dynamic types. Form al parameters of
routines are considered tø have extent coincident with the routine body.

Tartan prov ides a facility for matting generic definitions of routines and macties. ThIs allows the
programmer to wri te a singl, textual defini tion that serves as an abbreviati on for many closely-re lated
specific definit ions. The defini tions may accept parameters; the parameters are completely processed
d;xing tran slation. The effect of using a generic definition Is that of lexlcally si~ sfltutI ng the defin ition
in the pro gram at the point of use.

Tb. syntactic defini tion of Tartan uses convention al 8ff with the following additions and
conventions.

- Kay words (reserved words) end symbols are denoted with boldface.

- Metasy mbols are denoted by lower-case letters enclosed in angular bracket s, e.g., ~ stmt~~.

- Th. symbols ( and ) (not in boldfa ce) are mete-br ackets and are used to group constructs in
lb. mete-notation

- IPwas superscript cPieractsrs, possibly In ~~~~~ with a au~ script cher.cter, re used to
denote the repetition of a construct (or a group of constructs enclosed in ());

~~ denotes ‘zero or more repetition, or
. denotes ome ar more repetitions or
e denotes predsoiy zero or one Instance or.

Blnce It Ii often coiweriant to denels lists of tt*igs that are separated by sam. single
pu rctustlon merit, we denote this by pladrig the pumcbj etlori mark di~.ctIy below the
repetition cheracler.

The semantics of the languege are described in English In the interest of a compact and regular
syntax, we have allowed syntactic constructs that are disallowed on semantic grounds. This Is
consistent with standard practice with respect Is, for example, undadarsd Identifiers.

lUteri i and identifiers for var iables that are declar ed manifest are manifest objects: hence
they ar• Inherited.

L _______ - —
~~~~~

- ----- -_ - — — - -
~

•~ ---~ -- --- T _ _ _

. f
Tartan R.fsrsnce Marual -3-

2. Basic Structures

2.1. Pr imitive Expressions

‘consi’ ~ — (4uit~’(. tdIgit)’)* l trvs l faIs. I aiI l dsssd I Spsn l MiNllSuIply
I ‘constructor’ I ‘Id’ I ‘ou~ ~~ ‘‘oonst’ I 4yee’ ~CO. S*~ I ‘asp”

‘constructor’ :~~ (‘oxp’i, I I I (‘cot s.’ —) ‘o’er’ I,. I I • ‘cS.ir’1 -

Som. examples ar e
123.456
Color ’gruen
Person s (S..’ .21.seIe)
‘sfg
(1. .2—.I.1. 3..4—~I.S. ~~.n—~1.I)

Primitive expressions form the beat s for the ronzsiv. deflntion of expressions. They ar e the
elements referred to a. constants, literals, and constructors In pro5rowulng languages arid as
generators In algebras.

Consta nts and literal. denote values. The type of a constant Is deter mined by It . declaration The
types of literate are determined as follows:

A ssq.jenc. of digits contening rio decimal point is of type lit Type Int Is deftnsd In terms
of type fixed for seth machine as described In Appendix Li.

- A seq.ience of digits containing a decimal point is of type Real. Type Real I. defined irs
terms of type float far seth machine a. described In Appendix Li.

- If a seqj.nce of digits, with or without a decimal point, Is q.iatlfied bye fixed or float type
or by a defined type that Is uttimetaly defined In terms of Shied or float , the type of the
liter al Is dstsnn.ned by the ~j iIfler.

- True and fal se denote boolean values. fl denotes the rail vabje for any dynamic type. Open
and dosed denote values for latches. Empty denotes the empty set. P4nt denotes an
activation of any process in nail state.

- A charactsr string containing one character Is a literal of type char. Any other character
string Is a constrictor of type stri ng.

Uterals and manifest expressions are evaluated d;,lng translation with the same algorithms and
eccucecy a. are used during exeaation

If an dd is to be a cconsb, It ,,ajst hive been declared consi or be a member of en erumerat.d
type. If an c.xpr I. to be a ~con.b~ It mist be a rainiest expression.

— The type of e constructor may be Indicated by e prefixed ~jiIflsr. If the pallflsr Is omitted, the
constructor Is assiaeied Is give the value at an array indued WISh Integers bagiruing at 1.
Constructors are provided for cumpoJta end dynuali types.

- ti the conetiuctor bee a record type, the csxpr~s in perentheees give the field values In the
order of their declaration

- If the constructor Pies an array type, U~w parenthesized list gives ttie learant values. If the
constructor Is a simple axpisesion list, it gIves the values In order from lowest Index t•
highest If the construc tor uses the Porni with option s, the expressions In the coptlon s
Irdcete the array position Ii which each value carisaparids. The special constant ethers m a y
eppeer as the last toptlen’ II will mitch any constant that Is not Inckal.d In any other
copbona . The constructor form with option. is legal only for arrays and for types ultimately
defined In terms at arrays; the expresalone In the coption~s oust be mmifest.

- Ii the constructor bee a varla jd type, the first expression In the parenthesized list I. the tag
end the remainder of the list Is a constructor for the carrupunding variant.

_
- _ _

- -

Tartan Reference Mamjal -4-

- It the constructor has dynamic type, the result is a painter to a new variable having the
attributes supplied in the type ~ ialifl r and the value given by the parenthesized list

A constructor containing no <expr ~ provides an urwm tial lzed instance of the indicated type.

2.2. IdentIfiers

<var i~~ :: ~~~
<r.nge~ :: <era.~ .. <~~p~~ I ‘ty ’
<option’ ::. { ccQnst~ I ‘run s.’),
<~ual id’ :: (<Id’ ‘~~~ <l~~
-<Id’ - ‘Isttsr <lett er or — or dlgit)

Some examples are:
An ios I C.t
V (3)
V(i . . P4)
Sex . Ag.
I dent_wi th_osr~

Identifiers have no inherent meanings. They ar e associated wIth objects, routines, nodii.s, types ,
statement s, and excepti ons. Declarations and defInitions establish the meanings of ident i fier s within
partia4er scopes.

Idsntlflsrs may be simple, or they may be ~ialIfied with moitie or type names In order to resolve
ambigi.J ty among names exported from several modiss.

Identifiers that name objects are <vs. id~s. They may be simple Identifiers, they may be ~ialifI.d
to indicate wher, they were defined, or they may neme alamanta or substructures of composite
structures.

- Simple <var id>s (i.e., <~jd ith, used as var id~s) we identifiers declared In variab le
declarations or by the <formal s~ in a routine header.

- The form <var id>(cackials~), where <var id’ denotes an array, dena t.s the element of that
array indexed by the <actual’s. The types of U-ia actual. mist match the index types for the
array.l

- The form <var id$.cacbjels’), whir. <var Id’ denotes a variable of a variant type end the
<actual~s consist of a single <exprs , Indi cates that th. tag field of the var Id’ mist be
<.xpr~ and denotes the value of that option of the variant type. ~~~i the left side of en
assignment, this form has the effect of setting U-is tag fiel~ the expression on the right side
of the assignment must be of compatib le type.

- The form <var 1d (<renge>) denotes a atèarrsy. The var ida. must denote an array and the
limits of the <rangn’ roust metch the dsclared type of the ar ray’s index set end be a
si~ range of the declared range The e~ array consists of the Indicated elements ci the <var
lob , In the same order as they appear In the <var id’. It the index type of the array is fixed
or defined in term, of fixed, the siharray Is Indexed by integers beginning with 1; otherwise
Il ls indexed from the rmninuis value of the index sot of the array.

- If <var id~ denotes a record object, the form <var ith.<Id~ denotes the field named rid’ in
that record object If <var ld~ dsnoles an object of dynamic type, then <var d>.cld~ denotes
the field named rid~ In the record object ~~~~~~~~~~ to by the value of var id~ -<var ld~ mist
not hive the value oilS. This term Is alas used to access the value of a variant tag or the
attributes associated with the type of a value or variable. In addition, If I Is a var iable of
dynamic type, Tell Is th. complet, value (all componen ts) of the object associated with I.

1Note that the Index types Include range restrictions.

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

,— .~~-— -- 

---4
-~ — —— — -- — — — ---- — - —-- — —~~~~~~~~~-____I —- —----— -~



Tartan Reference Maraj al

- The form Rep’.cid. is used In the same scope as the definition of the <id.’s type to Indicate
that the -<Id, is to be regarding as having the ~rder1ying type. This permits operations on
the underly ing type to be used for defining operations on the new type.

I -  Identifier, that refer to definitions (e.g., of routines, types, or modies) we <qual Id...
When an ident ifier Is exported from a modiie, In the scope to which It Is export ed it Is refar red to

by a <qual Id. or var Id. constructed by prefixing the identifier with the name of the moóie from
which it Is exported The qjallfier is separated from the identifier with an apostrophe. Qualifiers may
be omitted If no enibiguty results.

A <type. used as a rang. roust be fixed, an e.unerated type, or a defined type that Is ultimetely
defined In term. of fixed or en enianeration.

2.3. L xlcal Considerations
Sp ces may be inserted freely between lexetnes without altering the meabng of the program. An

end-of-line is e~jvalert to a space and may not be pert of a exams At least one spac, mist
appear between any two adlecent lexemes composed of letters, digits, osidarbar, and decimal points. In
identifiers, all character, ar. significint, boA alphabetic case is not

Comments ar e I ntro~ jced by the character 1 and terminated by the next following end-of-lIne.
They hive no effect on the elaboration of the pregrrL

Althou gh the language as presented in this report takes advantage of characters that ar. nat in the
$4-cheracter ASCII stibost, simple aIb sti bilon to map pro~ snis into that alphabet are defined In
Appendix I.

_ _ _ _ _ _ _ _ __ _

~~~~~~~~~


Tartan Reference Manuel

3. Expressions
cex~r. :— <uno~’ <var Id’ I < snoØ’ <cOntt ’ I <unOoa~ <lunc call>

I unoo” (<miD”) I (‘.iDr ’) . ‘Id’ I <.~or ’ ‘bIno~’ cexpr ’
<Ufl00~ - I -
<birios’ *1 / I • I — I (i t I) l~ 1 . 1 # I A I csd I v I csr l t
<I unc caU. :— <qusi Id’ (<actual.’)
<actual.> ~

. CexDr>,I

Som. examples are:
1

•int.)
• z*w)

(Poot .Pt r).alI

Exprsssions describ e computations that yield vakies. The elaboration of an expressIon proójcee an
object containing the valu, of th, expression. The type of the object is deter mined by the following

- The type of iii <expr. that Is a cvsr Id., .cconst>, dunc call., or selection of a field from a
computed composi te value is deternw n.d by the appropriate declaration (or tie for Itera te).

- The type of a parenthe sized expression is the type of the expression InsIde the parentheses.
- The type ci a binary infix expression or a unery expression Is deternirned by the definition

of the eppropriata binary or unary operator dsfiriitlon. These operators repres en t
invocations of fun ction. that m ay be overloaded. Th. appr opriate operator defini tion must
therefore be detenniried on the basis of the types of the operands

The usual operations we associated with the operators ., -, , / , 1, -, ~~, v, cand, cci’, <, ~~, �, ., a,
and ,‘. The programmer may overload these function names, but th, added defini tions must be ornery
or binary to conform to the established syntax. Pr.c.dence flies for the ornery and biniry operators
are given by the following t.bte, in which oper ators on a single tine have the same precedence and
oper ators higher in the tab le bind more tightly than operators lower In the table. Unery oper ators
have the highest precedence.

1~

A sand
V cci’

WIthi n preced enc, levels, assoceaffv$ty I~ left-to-right
For all oper ators except cand and car , elaboration of an sxprassion proceed, as If th, expression

were wri tten In functional form (see section ~ 1) For clint and car, the left oper and Is elaborated first
and the right oper and Ii elaborated onty if necessary.

A msnlf•st expression Is a literal , a value of an eiuneration type, an identi fier declared with
manifest binding, a generic parameter, a mamfest type attr ibut e, a constructor involving only man ifest
expressions, or any expression involving only these expressions and lenguags-defined operations. The
value of a manliest expression Ii known &.xing tran slation.

_ _-

~

- - I
_ _ _ _

Tartan Reference Manu al -7-

3.1. Inv ocatIons
Some examples ar ci

F(S)
• Sequence In ssr t (S.5)

Pt)

• An invocation causes the elaborat ion of a procsdjre or function body with the element , of the
<form ats, list of the routine bound to the elements of the cactuals. list provided by the invocatIon. If
a routine name is overloaded, the definition whose formal parameter types match the type . of the
actual parameters is selected. Procedse and functIon invocations (<pros call> and cfunc call.) differ in
that proceel.re invocations are stateme nt ; where as function invocations are expressions having values.
An Invocation consists of the following steps.

- Elaborate each of the cactuels . in an unspec ifIed order , yielding a sepjence of objects.

• - For each resul t formal, create a variab le having the same type and attributes as the
corresponding actual. Bind the result farme ls to these ve’~ebles.

- For each const or manif.st formal, create an object of the specified type with the same
attributes as the corresponding actual. Copy the value of the actual into the new object 1

- Bind each var formal to the corresponding actual, which must be a variable (I.e., a <var Id.).
TPtjs var annal s are passed by reference.

• - With the bindings established, elaborate the body of the routine.

- For each result formal, copy the final value of the variabl, bound to that formal back into
the corresponding actusi, which must be a variable (I..., a <var di.). Note that this actual is
determined before the elaboration of the routine (La., for the actual Aft), it is the initial end
not the final value of I that determines the variable that recssves the result).

The result of a functIon I, treated as a remit par ameter instantiated at the call site with extent as
• described above and passed es an implicit parameter to the kmcti on. ~ tIng the elaboration of the

function , its value I~ developed in this result parameter.
Duri ng elaboration of a function , assignment to a vari able that is not local to the function body (or to

th , body of a routIne it Invokes, directly or Indirectly) I. Permitt ed only If the functi on is never
invoked In a scope where such a change Is made to a variable or component that Is directly
accessible by the caller.

Actual parameters ar e matched with formal parameters positionally. They must satisfy restrictions on
type, binding ar id allasing.

- The type of an actual parameter Is acceptable if its <type name. exactly matches the <type
name. of the corresponding formal parameter. Type attributes (Instantiation parameters of C
type) play no role in type checking. Chapter 5 gives rules for determining <type name>,.

- The binding of the actual parameter Is acceptable If it matches the <binding, of the
corresponding formal parameter according to the following rules.

If the formal parameter is then the acb.mi parameter may be
var var Id. declared v5r

• coest caxpri.
manliest ar~ manifest caxpri.
remit <var Id.

- Finally, the eat of actual parameters must satisfy the following nonilaalng r.strlctloni A
vat able may not be used In more then one var ci remit position of a single proced,. ci

‘Note that for dynamic types, this Is a pointer copy.

78 12 21

______ — ~~~ ~~

•‘- - - -- - - - - — -----—-

Tartan Reference Mamual -8-

process call. For the purpos, of testing this restrictio n, imported variables are considered to
be actual par ameters bound as specified in the import list

3.2. Dynamic Allocation

Each use of the constructor for a dynamic type creates a distinct element of th, type. Each such
element rsniains allocated as long as there is an ec~.< s path to it

Attri butes of the dynamic type we provided when the constructor is used. Thes it Is possible to
associate objects with dIfferent attributes with th, same dynamic variable at different tImes.

F,—
~~~~~ ___________

Tartan Reference Manu al • 9

4. Statements

<stint ’ :— <proc Call ’ I ‘id’ <$lIiIt ~ I <i”p$Y’ I ‘block>
I ‘vii d’ s <IxØr>
I if <.xpr thin ‘stmP~’ { slit ‘alpi) thin (,tmt ’.’ ) ( its. cstmt ’ ) ft
I use ‘a~pr’ ( an ‘~5fie~> •> cstmt ’.’ }~ 

isis
— I whit. ~sxpr di ‘stsit)1 ad u IS , <iö lii QSri$S) di <stir t’~ ad

l gst. ’lo’
I signal Mull id’ I resignil I ass.rt ‘Ispr)
I ‘stint) ( on <,d>, —) c,tmt~~ )~ I

l cr.de <vv ld’ ( ’actus1,.~~)
<proc call’ — <quit i~~ ( cictuals’ )
<block> :~~ <code body’
<cods body’ ~— higin cdsf-dscl’ )‘ ‘stmt’~’ sad

Statements designate actions to be performed. Their elaboration remit, in changes in the execution
state of the prog ram . The <empty. statement has no effect Labe ls are used by plo statements in
alteri ng the flow of control in a program. A l abel is accessible only within the cstmt , it labels and
within a compound statement (sepjsnca of stmt .s separated by semicolons) of which It Is a <stint>.

4.1. Block.
Some examples ar e:

b.ga, vii ~s bout.ans x i — trus sad
bsejn n is y; ‘j is Z~ sad

Blocks control extent. A <block> is elaborated when control flows Into it, either because the <block>
is the body of a routi ne that has been invoked or becous. the elaborati on of another stint . has
transferred contr ol to it. First, all declarations ar id th, texts of all moö.il. definitions we elaborated, In
lexical order. Next, the cstmt>s are elaborated as described elsewhere in tie chapter. Fi nally, the
<bl ock, is exited or terminated, li lt is exited, control waits for all activations declar ed In thi s <block>
to become dead or mint, then the extent defi ned by the <block , is dosed and all nondynanic varia bles
instantiated in the <block> are deal located. if the cblock> Is ter minatsd, all activati ons declared in the
<bl ock> are forcibly terminated, arid then the <block> is exited. The choice between exiting end
ter minating the block depends on how control arrived at the end of the block. If the block came to
an, arid because a handler completed or an enclosing process was terminated, the block is term inated .
Otherwise, it is exited.

A <block. Is riot permitted to export identifiers. Except when used as a routine body, I t is an open
scope and has no need to import any.

4.2. Sequenced Statements
Some examples ar~

n 1. 1* ~ *5 2i 2 ~ 3
SuoSci is I; far I hi i . . iS di SumSq is Su.Sq • V ( l ) t 2  ad

Sequenced stateme nts are elaborated In the order given, except when that order Is int .rn.~ ted by a
gote or an exception.

4.3. Asslgrmient State ment

Some examples ar m
V(S) .$u .  is S
n is (3 + sit * ~

The assi~~.,.snt statement V :s r is a proce&ve call on en appropilat e assignment operator,
defined

A
~~~~~~~~~ ~~~ àOt~S.•• - -. f l~~~; • ~~~ • t’_~ .-~~~  - -

L. • •~~~~~~~~~~~ ~~

- --- ---. -

Tartan Reference Manua l -10-

proc :.~ (v.r LH StT . em it RI4 Sz T)

for arbitrary type 1. The value of the second parame ter is assigned to the object named by the first
parameter. The parameters are of the same type, and the normal type-checking rUes apply.

Assignment operators are defined for all primitive types. Assignment operators are defined for
array s, records , variants, and programmer-defined types if and only if they have no components that
are declared const or ar e nonassignab le by virtu , of this rule. An assignment operator that copies the
whol e value is automatically auppl ed for each user-defined type. For dynamic types thi s is a pointer
copy. Alth ough assignment may be invoked with any variab le and value of the type, It requi res that
the attri butes of its left and righ t operands b. identica l , and signals the BadAssign exception if they
are not The BadAssi gn exception is also signalled i~ an assignment involving mismatched array, string.

•or set sizes or an activation not in mint state is attempted.

4.4. ConditIonal Statements

Some examples are:

if A < 3 than ~ is v fI
if , i s S c a nd y/M S t h s n z i s w t (y /,c) sl s . w i . j .9$ q is ij/,i fI
cu. T in t

on fuch iii —‘ tue i — coolu Descripti on u s Pur pli sh—s’ed
on puce -) l4ue . war s~ Descr ipti on z . $roun u ,h—ptj rple
‘sic

In the statement “if B then Si else 52 Ii ”, B rust have type boolean. First, B is elaborated. If the
resulting velu, is true , Si is .laborated otherwise S2 is elaborated. In tri, absence of an else clause,
S2 is taken to be the empty statement , which has no effect.

Th. expres sion

ii 91 then 51 slIf 92 than S .., .tii Bn thun Sn .ls. S. fl

is equivalent to

II 81 then Si .1..
if 82 then S2 .4..

if Bn then Si, else Se II

fi

In the statement

is. ES
on Eli Elk —) Si
an £21 £2 1 -) S2

on Er’ l.....En. -. Sn
On others -) 5*
eeoc

The E s must all be expres sions of the same type, and all except EQ tru st be manif est The type of
the Es tr ust be fixed, an emimer sted type, or a defi ned type that Is ultimately defined in terms of
fl xed or an erijmsration. Any of the E’s except EO may bs a <range>; such an Eij is treated as th.
s quence of value s In the range. First, £0 is elabor ated. The Elj are elaborated and the results are

• compared to EQ (In unspecified order)~ I f £0 I. equal to some Elj, the con’espoidrig Si I. elaborated.
If all compar isons yield false, S. is elaborat ed. Exactly one SI is elaborated for each correctP elaboration of the case stateme nt. If the special constant others does riot appe ar as the last napt lon’
and no match Is found , en exception (Caeef ailed) Is signalled.

L - ________________________________


~~~
—-

~ ~~~~~ ~~~~~~ 
-

~ 
TTTT T~~T — 

~
- .:— 

-• ‘— -- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.‘

Tart an Reference Manuel -11-

4.5. Loop Stat .ments
Some examples are:

- ~ili, x 2.5 de x s ~f~1, *)1 y su Gly, ul at
for I In l..1i de V I I) is I ad
for hue In color ds TInt (hue l is hue N

The loop while E do S ad rspeetedy elaborates If E then S 9 untIl E becomes fal se. If E Is
ini tially false, the loop has no effect (other than the possibl, hidden effects or exceptions caused by
the elaboration at £)

Th, for stateme nt for I In R do S ad repeats the steps
- Bind I (as a constant) to a value In the range a
- Elaborate S.

once for each element of the rang. R, in order. It R has no alam.nt. , the loop has no effect The
scope of the loop constant is restricted t. the loop.

46. Uncond Itional Contro l Transfer
An example is

gob L

The effect of a gate statement is to force control to the begirming of the statement with the given
label. Sinc, the scope rule, prevent iv*ierltance of label s aiross dosed scope boundaries and
importation of labels, a gob can not be used to transfer out of a routine or mootie.

4.7. ExceptIons
Some examples are:

signal Toot i ig
iesert S
rsad(fI Is.ii) on E~~~~ -, gels E n i t

~ . ii.1 (an Overflo w —. u is 8
Exceptions are processed by harder douses associated with indviat.j al statements. Each handIer

clause associate, processing code with given exceptions. The special Identifier ethers may appear as
the last cld~ list of a handIer daueei It metchas any exception that is not named In some ether
exception ad~ list of the sam clause.

When en exception is signalled, central is transferred to the nearest dynarelcalty enclosing handIer
clause that hardes the exception, author explldtiy or ttv ough an others douse; the elaboration of the

• herder replaces the elaboration of the r amsIndar of the statement It this harder Is not In the
a.~r’entty-ex.cubIng block, all InterverWng blocks will be terminated. If a herder is not fssmd within
the currently-.xsoutlng routine, that rotilne is tsrmineted and the exception is r.slgnelled at the point
of cell of the routine. If a herder Is not found within the oj ri entt y-exeaati ng proces s, that process Is
term inat ed and the exception Is resignalhed at the end of the block U’. which the process activation
was declared after welting for contr*l to reach that point arid far ati other activations declared In that
block t. terminate. If no hirder I. found In the scope of the exception name, a defeat h*der will
be supplied to terminate that block.

Exiting a handIer causes termination at the cstmb with which it is associated. If the herder
r.slgnsis the same exception or elsie a new one, the normal nies far exception processing apply.

The resignel conenand may be used in any harder body to resend the ignel that caused that
handIer to be invoked

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- _____________



Tartan Reference Manual -12-

The assert statement raises the ass.rt lon exception if the ‘expr~ is I a u .  it is exactly e~ Ivalent
to the statement ‘If - cexpr~ then signal assertion f 1 .

There is erie exception to the rut e that an exception roust be hand ed by the block in which it is
signalled or by a caller of that block: the Notif y operation on activations or actnames. The effect of a
Notify is as ii the Terminate exception were signalled in the currently-.xecuting stat ement of the
activation named by the Notify command.

4.3. P ara llel Pr ocsss Castrol
Seine examp les ar e;

rest. P(S)
act lv .ts (Pi)
If lsGlocked (P1 ) ffian

The cre ate command instantiates a process, P, as an object of type activation-of-P. The <var d~.in a create rm.ist name en object of type activation-st-P that is in mint state. If a proc ess takes any
var par ameters , the corresponding actual parameters voust have extent at least as great as the
activation variable. The effect of the create is to instantiate an activa tion of P, bind the actual s of the
create to the form al . of P, and set the activation in suspended sta le.

Each activation has a unique identi fying token value of type aciname , and It may be named by erie
or more objects of typ . aetname . Except for create , all operations that control parallelism are special
outlnes that operate on either .ctname s or activations. These routines control the pr ocesses and

paralleli sm by changing and interro gati ng the states of indiviat.aal activations; they ar , described In
Appendix 12.

Note that the extent rules require an activation to be dead or mint before the block in which Ib is
declared can be exi ted This provides en in~IIdt jo in operation. A fork can be obtained with a
series of creates and activate..

~ 

- -~~-—- - —.--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —•-----— —..--—-- _— -.-.-— — -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-------—.- • — - — - - • • - - — • • - .-

• ~~~~~~~~~~~~~

Tartan Reference Manual -13-

5. Iyp .s

<ty~e~ ::— Nsed(4.cft&.I.’) I Rset(< ctualcr) I t.e~ee, I lash dxr J Oet <actual,’)
I su 31 eeu.((cha, P 3 1 ‘is,”.. ‘isp’)- I sell ‘.ctua~s’ I I u rInal <actual ,’
I ar’s, (Qamge’ • I of typa’ I reseu’~ f ‘dsdaruho.ø ,~ 3
I v taM ‘dedarahesu em 4ophoui -) (type’ rI dyonuis “yee’.l ashlvatiui, of ~~~al # I istnam.
l type name ’((<a c tue l s ’) fU

<type nsase’ flsed I nss*theelsel l I.adu I ch., I 0. l setIgfrk,g

~~ sy (*ype name’ • Is ‘tyae Aim’~ I reserd (t ‘~~~ (type nurse’),• 3I varidIf (<type name’ (a. <Option).) (type name’ 3 3’I dyu..ia (type same’ astivallem <opal Id’ 3I ustuase
I opal Id’ ((<~d id’’ 3) 0

In Tartan~ a <type nam,. may be eithe, a simpf identifier or an Identlfl.r inflected with additional
type navies. The <type name. so formed captures all the information naa4ad for type checking.

- The ~type rieme.s for the primitive scaler and ample nonacalar types are the keyword, used
to declare thent fixed, A..l, beefs.., lafch~ char, set, siring, acbieme, Sits.

- The <type n ine, for an ar ray declar ed airs~’(a .b) at 0 ia array(I,D]’, where I is the <typename, of a and b.

- The .ctype nerne. for an erextierstion declared e,om(LL,L2,...1n3 is emmi(U,L2,...,t.4
- The <type flame, for an activation dedwed activation at P is activetien(PJ

- The <type name. f a r e dynamic type declared dynamic I Is dynamic I.

- The <type name. for a rsco,-d type Is boned on the sequence of field name, and <type
in its declaration. For a record declared ‘recer4F l:T1, F2.T2, ..., FmTn~ the <typename, is recor4Fl:TN 1, F2 TNZ _, FrxTPè~’, where the Fl are lets of field names, the 11

are types, and the TM are type names. andings in the declaration do not appear in the

- The <type uiame. for a varlanf is varia nl(TT,T1.~Vl ,T2-,V2,,..,Tn_,vnJ”, where TI is this
ityp. name. of th, tag, TI is the ith value of the tag type, and VI I. the <type name, that
corresponds to the ith value of the tag type. As a result, two variant cfype t are the same If
they specify the same <type.s for all values of the tag.

- The <type name, for a defined type Is the name given in the type deflaition.

L1. Scalar Types
Some examples are;

Re.t
1..1.
ones(Vuotisls, ocsv e, p c , senro nl -

G.ilt-in ecelar type. Include fixed , fleet, bateau, Iskit, and character. Integer and real roust be
constructed as special cases of fixed and fl..t ~~dered scaler enumerated types are defined by
prov4ding en ordered list at vikies.

Types fixed and float require cactuels, lists to provide range, scale, and precision when ttiey are
used iii declarations. These are attributes end do viol affect the type. Although bIndings for attr ibutes
m.y In general be censi or manifest, the specifications of fixed and fleet reqire manifest attr$butse

To defIne • type, the naxpr.e In an explicit range iviel be easel or manifest

5.2. Canç:slt. Slruekir. s
Some examples ar e;

__________________— - .•. ~- . • - — • -~~--~ ---- — ——..•—- -

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ •~~~~~~~-- -



Tartan Reference Manual -14-

arp eyti . .10) of Color
srv.y (Co~or) of R eel
st rin~ ( IO )
r.cord (N..e:stri ri ti (35) . Agez IntI
v,rleM ~~i boot... (5~ liv. -‘ tnt en lutes -. alert

Nonscalar data structures may be belt up In three wayt with arrays (homogeneous indexed lInear
structure), with records (nonhomogeneous stvucbs*s with named fields), and with variate (str uctures
whose substructure may very with time). In addi tion, the noneclar types eel, ableg, and file are
defines

Legal bIndings for fields of records and var iants are var, censi, and manifest It a ibirdng’ Is
empty, i t is taken to be var.

A variant type must have exactly on. tag field. Th. special constant others may appear as the last
<option~ of a <vari ant type ; it matches any constant that does net appear in any other optIon ~.

Th. syntax for arrays providus an abbreviation for a set of types pr.—d.ftn.d s
an’ay(1xType,EItTyps~rr where Ixlype is the index type, Citlyps is the element type, and r Is a

(sub)rarige of Ixlype. Thus arrsy(L1O) if Ioat means arrsy(irilJloatJLlO) It. type name,
arvay(snt,tloatr, is written arv.y(int] of ftoat . As for any type, when an <array typs~ Is used as a

formal parameter, the attributes are not supplied Th, type arrey(A,8) of T is an abbreviation for
array(A) of array(S) of r. Similarly, the array accessor ‘~ijr is an .bbrevtatlon for Vtixjr.

5.3. Dynam ic Types
Some examples are:

dynamic P u S
dynamic record (Oat. : m t .  Nest : L i s t E l t .  caist l Ade’s Tn t s. K]

Values of a dynamic type are pointers to variable, whose structure corresponds to the type
defini tion. They are initialized to nil. The extant of these variable. covers the entire scope of the
typ. definition. Elaborating a constructor for the dynamic type yields a pointer to a new variable
distinct from ill others. The constructor supplies the attributes for this variable they are not supplied
in the declaration of the nan iod variable of the dynamic type. Thus a named variable of dynamic type
may at different times point to. several different variables having different attributes.

5.4.. Process Contro l Type.
Some examples are;

activat ion of P -

Par allel processes or, controlled with data of two types — aclivetions of processes and actnames,
or names of act ivations. Activatlens are instan tlabons of a given process ; an activation may contai n at
most one process activation ds$ng its lifetime end then only of the process given In It. ctyp s~. An
ectname value Is a pointer to an activation. Actnani e variables may coetsiri pointers to activatIons of
any pro cesses an schism. veil able may refer t. different inita’idoilons of different processe. from
time ~e time.

An act ivatio n Is used to control parallel or pseudo-p ar allel execution of a process. At any time it
may be In one of tote state.: mini, active, suspended, and dead. IPis extent of an activatlos variable
coIncides with its scope. The iomedetsly enclosing block comet be salted i~~1l all activations declared
with in It are deed or mist. An activation is associated with exactly one process, which must be named
by the ‘qual

An actnems ray refer Is any Instantiated process. A newly-declared edna,,,, or acttvstioø variable
is irwtiallzod I. mini.

5.5. DefIned Types

Same examples are;
T I,,)

• Seousnee ( In t l  (UI
Preyaramoi s may define view types. Lee section 1.5 on Type Oefkdtione.

_ _ _ _ _ _ _ _ _ _ _ _  _ _  
-



• .
~

- .—~ -.~~~~ ~~~~~~~~~~ ‘-• —- -- — —

:~

Tartan Reference Manual -15-

6. Oe&~itions end Declarations
‘def-deci’ ~~ ‘dsclaratiosi I ~ sod dst’ I (routin. d f )  I ‘tyss dot’ I ‘tumin c dot’ I ‘enstv

I ~‘u~orts MuaI # • I esiperts <quil .d’~ i iesep1ri i ’  I deabis ‘10.
I pr.t <pvoc cslI’,~~~garp

‘decI.r.tl on’ ::—

‘mod d.f ~ — modal <10 ‘mod test’
‘mod test ’ :;— ; <code body’ I remote ret )

• ‘rO ut~n. def’ : peas <o~~ <proc test’ I tens <10 <tune test’ I presses ~0 ‘ares test’
‘I I fun. — ( <~.111°, I ismopa • dims

‘tunc text ’ ~ ( ‘formats) i ‘10 s ‘type’ ; <bleeP) I ‘remote i.isl’
‘Proc text ’ ~ — ( ‘foemsle’ k <biocP) I ‘resist e Wet’
<type det’ ~ — type <typ e name ’ ( (<formal.) ) ) • <type’
‘gorieric dot) n— generic m ode. *10 ( <formal.) ] ‘mod test’ I gesisris tens *10 ~ dormais? 3 <fun. t~.t)

I generic pros 40 
~ 
<formats’ 3 <proc tOil) I genesis presses <10 ( ‘I orma10 3 <proc test’

‘remote iris t) ~. s~~~ li0 ( <actu l k -:-~( ’10 )
<forinsls (‘b.rsdlng’ 407 * <type name’
<binding. _- ‘tmsty~ I var J ss.s$ I ma.disst I r,sslt

1.1. Decla’utions

Some examples are ;

var xi R ea l
ton i  ~:. ~ us
var fue l. Hue2 . Hue3: Co l or
vii - T i n t  * — erwus t saffrori . ~~ e. fucPusiI octiret
var Vi irrey(S. .7) .4 tnt
var fl1:llerli lS) . Pl2sflarli (7)
manIfest P1: Reel :- 3.14

The syntax for declarations allows tPwee kinds of abbreviations. If the irWtf.llzatlon expres sion
appears, the type of the variable is evident from the rexpr and this °:itype, may be omitted In
addition, lists of ‘id.s with the san e types or bindings may be condensed. These abbrsviadone are
illustrated by the (allowing five declarations, all of which have the same effsct

v.r s.~~ 5. S
var s. t js t n t  . S
var s t .  S. 

~ 
is  S

var s s ln t  :. I. 45 t nt i s  I
var islui t i s  5; var ~a l n t  i s  S

Elaboration of a declaration causes instantiation of an object which is the variable. Each varfab4e
he. a type and a value. The type is determined when it is instantiated, but the value may be changed
by further elaboration of the pro~ am. A variable may be restricted to be coast (value fixed at block
.ntry) or manifest (value fixed dwiiig Iranatation).

Elaboration of a declaration proceed . as follows.

- Evaluate the <.xpr~, it present It must be pi’saant in manifest or coast declarations. It suet
be manIfest In manifest declarations.

- ~ the cblndinp is msnIfe4 bind the valus of the nixpr’ to the denWisr(a)~
- If the <blndnp is coast or var, elaborate My <actual.. in the <types end instantiate a new

variab le with the indicated type and attribute, for each Identifier. If there wee en <expri ,
assign It. value to each of the new variables.

When the type Is dynsmlc, the dadaratlon supplies the <type nlme onty (no attributes). hi this case,
onty the pointer l~ allocated at block e*r the attributes are &~ il ad when the dynamic type Is
actiselly (dynamically) allocated

- . -~ - __~~~~~__ ___ --.-- -• • ._ •_ • ___. _ __,__•._ _rn.• --—-— -.-— - -- ----—- - -  - - - • - - - —  —- --- - —---- — —•.- —



— - --7- — —•-— --—-.—•--,
~

,—•‘-• •-- .

~

.— - - - --
~~~~~~~ 

— — — ‘- .
~
‘
~~~~

-
~~~~~~~~~~~~

.
— — V-— -- • - - , — ----

~~~
- —-- - — - 

~
- 

_______

Tartan Reference Manu al -16-

52. Modules

An example is.

unedid s Coun tsr O.f;

experts Coun t er • Rsen t • I ncr , Vii us;
type Coun tsr • tnt;
pros Resstlr.oui t C:Count,r h b.gin C ;s 5 snd;
pro c t rucr(v.r C:Couri t sr ) ; b.gIn C t C • 1 end ;
tune Valus fesed C:Countur)x*Coun ter ; bsgm * is C end
end

The elaborati on of a moó.~e takes place s*sing the elaboration of declara tion for the block in
which the module is defined. This elaboration consists of elaborating the declar ations of the medic in
lexical order , then elaborat ing the statements of the media.

A medic or routine ither its identifiers for defini tions (meckOs, routines, exceptions, and types) froni
its enclosing scope. It m a y  explici tly import identifier, of objects from that scope, provided the
objects have global sxtenL A mactie, but riot a routine, may export defini tion and object identifiers to
its enclosing scope. Types, named routines, field accessors for record s, and variables are exported by
including their names in the export s list of the media. The right to apply i nfi x operators,
constructors, subscript., .a1I , or the create command for a type I vs exported by including the
special names V1nhl~, Tconstr , T’s~b,cr, Tall, and Tcrnt., respectively, In th, exports list Uterais
of enumerated types are exported automatically if the types are exported.

6.3. Routines

Some example, are

proc ~~(var i s I n t ) ;  b.gid w is  - s; end
peas G I, ConiG ISI
tv,,s I aN I I  lxi OsjriT) 

~s booleess; b.gum, 
~ is lx • nil ) snd

flails 4. 1a , bulorp ) cigor p;

Imports Bia s ;
c is goro ’ (a. lef t ib .  left .B l au . a .rlgli t .b.rlgfl t4l•s)
m d

A rou tine is a dosed scope whose body is a block. This its body contro ls extent for local
declarations, but does not inherit idsntl fier s for (non-man ifest) objects or l abels, The <formats , list
declare , the identifiers for parameter,.

A rout ine may be a function (func), which returns a value and has no visible side effects ; it may be
a proceda’e (pr oc), which can modify its parameters but must be called a. a state msnt or it may be a
process, which is a potentiaily-parulial proc ed,,. Special type-specific rout ines vs described in
Appendix 1.2.

Routine names may be overloaded by binding the same identifier to several definitions with different
number , or types of parameter ,. The furucti ont s for which special lnRx notatien Ii prov ided Sr.
obvious candidate. for overloading.

It a <binding> in a røullns header Is omitted, it Is assumed to be coast Th. ~e.ult binding may be
used only in procedres. No duplication of Identlfl~~e within the <formal,, list Is permitted , and
parameter names may not conflict with declarations or imports in the routine body.

6.4. ExceptIons
Some example. on.

useptien TooSig, Too$~.I I . Late , Singular
disable Tool i g, TooS..ll -

_ _ _ _ _ _ _ _  ~
_

~i::~ ”~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-

I

Tartan Reference Manuel -17-

• The scope of en exception name is the block in which It i~ declared A disable declaratIon in an
inner block suppress.. detection of the exceptions it names. A handier ctsase associates recovery
cods with a statement that m a y  generate an exception (see secti on 4 7).

- The di sable declaration permits exceptions to be individually suppress ed with in a givsn scope.
Should an exception ocos when its detection I. suppress.d, the can.e~ iencss one not defined. An

• exception must not be signalled or radeclarad in a scope in which II is suppressed Not. that
suppression of en exception is not an seaertion that the condition that gives rise to the exception will
not occur.

Standard exc*ptions will be declared in the global extort

LS. Type Definitions

Sonic examples are:

*ype Counter s m t
typo f l atr ixi n s I nt l — .my(1..n.1..n) at

A user may introduce a new type into his program with a type definition. The type dsflnftion itself
merely introduces the <type names and defines the representation of the type. Operations are
intr oduced by wr iting routines whose formal parameters are of the newly-defined type. Scope
boundaries, particularly mcdi. boundaries, play no role in the definition of the type. There Is, es a
conseqjence, no notion of the complete sat at operations on a type.

A type definiti on may be parwtetenize d. The bindings in the formal parameter list roust be coast or
manifest If a <binding> is omitted, it will be essisned to be coast. The names of the formal parameters
of the type ate available throughout th, elaboration of the program as constants, celled attributes.
They are accessed by treating the var daM> as a record and the type attribute as a field.
Attributes for primitive types are given as part of the type daikxllons.

WIthin the acop. in which the type I, defined, the qjalifisr Nap may be used to Indicate that the
abject named by the identifier Rap ~ iellfl,. Is t. be treated as if It had the underlying type. This
allows operations on the new type to be written using operation, on its representation When no
ambigUty arises, the Rep ~~atlflcation may be omitted

6.5. Genetic Definitions

Some example. are: 
-

goneric pros Rese t (T i tue.) (or xi 7 ) ,  bs~in x is x’•ln end
pros Rss.tCoior Is Reset tCo l or i
pr os Res.tX Is Re,. t (Saoolsj
ios*ul. St.cli Is a.._n.d (SteckOof )

goosek sos~ d. R I rigOe t Cxi Int l $
bests..~ .srts Rin g . Next ;
type R ing • Si,sdIl,S,I,K—1);
foss NeiutfR ;AlnqlN , eisdfl, e,Lx-Z), bo~~ N is ued INi4 ,E) s s.d
•nd

oodiis QS Is Ring OsniS )
• medids R$ is Rlng O .fI!I 

-

A generic definition Is syM.. tlUNy like the c& , .epoedng specific definition except that it is
pre fixed by th. word gsnarlc and it may have a set of genaric parameter. (enclosed in sq.*e
br ackets) alter the definition name. ~ar generic definitions, type is acceptable as a formal <type name>.

The actual parimetsrs e~pp8ad In an instan tiation of a generic definition may be any defined
identifiers, Including those for variables, fimct$ene5 types, or modiiss, or any expression When the
generi c definition ii Instantiated, the t,~t of the actual paresM.r replaces the IdentIfi ers that
represent th. formal parameters. Iii. substitution i. done on a lexical, rather than a str ictly textual,
beels. That Is, the idsndiflers In Pta generic definition are renamed a. necessary to e-eid conflicts
with the identifier. in the actual pon imatars.• I_ -~__~--~ --

~~~ 

1_ .~~ _ _ _ _ _ _-

~~

Tartan Referenc e Manual -18-

Both generic definitions and remotely-defined modules or routInes may be incorporated in a program
as remote I nstances. A remote instance may be an instantia tion of a generic definition or a reference
to a definition g iv n elsewhere.

A mact ie or routine that is used by the program but whose definitIon Is given elsewhere (e.g., in a
libr ary) Is incorporated by writing Is assumsd(cid>) as the body of a modie or routIne definition. The
<id, is used by a pra çnat to locate the remote definition.

A generic definition is inst anti ated by referring to it as the body of a mactie or routine definition.
The effect of the instantiation is as if the gener ic definition were lexical ly substituted in place of the
reference to it. That is, th, body of the mactie or routine being defined becomes a copy of the
generic definition.

An instantiation of a gener ic defi nition may be usad as the body of a specific module or routine. The
usual restricti ons on defining new ident ifiers apply to the mod.ile or routine being defined In terms of a

Generic type defini tions ari se from generic modules. They vs instantiated when the moctis is
instantiated. Thereaf ter, they may be used in declarations or definitions.

If the generic definition has generic parameters, the actual parameters supplied with the
instantiation oust have correponding types and be syntactically siitable for substitution.

It a generic definition is instantiated more than once in a scope, ambiguou s names may be
intro duced. The usual ru es for resolving such ambiguities apply.

6.7. Translation Issues
An example is:

er.s ~~ t i . l ze4spece)s LI . t l nq (O I f) gs..p

A program is a cblock>. The extent defined by the outer block of the program is the global extent
The translator may be guided by .<pragmat>s. Pra~~Ms have the same syntax as procedure calls.

The set of pre met names and the interpretations of the arguments s.. detsrm,ned by each trans lator.
Translators will ignore pregmnats whose names they do not recognize.

A pr ogram may be broken into separately defined segments. This decomposition roust take place in
the global extent The .awts of separat , definition ar e mo~ iaa and routines. The definition

,,,odii$ 0 ls asswui.d(II

in a segment his the effect of making the semantics of the segment the sanue as if the (separat ely
defined) text of Q had been sthstit’~tid for Is sssume4l) . The identifier I refer-s to a file, library, or
other facilIty for stori ng separately defined segments. The relation between the identifier I and that
storag e facility may be established by a pragmat

It is a matter of optimization whether the separate definition is included as text or separ ately
transl ated and linked in. In order t~~ perform Independent translation of a separ ately defined component,
it is necessary to embed the modie or n uns being translated in an environment that supp lies
definitions for all the names it inherits or mpcrts. This envirwwasnt m ist form a complete progra ms.
It is assumed that the translation system prevides commands for selecting which components of such a
translati on to save end for deter mining whore and ii, whet form they are to be saved

• I

- i

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _  _ _  -•---~~~~~-~~~~~~~~~~~~~~ .



Tartan Reference Manuel -19-

I. Standard Definitions

L 1. System-Dependent Characteristics

The translate,- tar each system is assumed t~ provids a moctie In the global extant that defines
appropriate system constants. Such constants vs assumed at various points in the language definition;
these and c.rtan ethers are summarized here in the form of a skeleton moduls.

msdu.~ Sue;

.xpsris . . . I s~~or ts a l l  dsllni t ion s bel ou
type m t  — fbed(. • . 1 I .opeper late ts tPis secP~fls

I Note ln t . t tI n and lnt Jts.. glv. r ings
typs Re• I — h usH . • .)  1 approori.t . to tn. .ach l ns

I Attr i but es gIve r ings, pr ecisIon , sc.Is

• . . I constan ts tna t desc i b. proper t le. of tM
I ob ject sichu l ne

prss . • . I procedures for accss.Ing m a c i h I t i s s  of the
I aesr.tlnq and ~j I s  .qj. tes.

• . I Sj~stsu—ds fInsd s~cspt ions sucl~ as Assertion , B.dA.slgn. . . .

‘ii

L~~ Properties of Types
All types have aselgrwnent operators and routines for conversion to approp riate other types. In

partic tiar , the scaler types Piave routines for convertin g to and from character strings. Afl noniscalir
types have constructors. The sections below sketch some important propertiss of the built-in type..

1.2 1. Fbsod
. Uterils: ~glt sbln~~Attnlbies: Mn, Max, PrecisIon, Scale

Infi x operations: Arithmetic and relational
Special routine,, roundIng. truncation

1.2.2. Fleet
Uterals: dIgit strings with decimal paint
Attributes: Mn, Max, Ra dIx, Pr clacn, Mri6xp, Mextxp
Infi x operations: AnitPmssdc and relational
Special routines: raadng. truncation

1.2.3. (m.unera tlons
All emanaratlone are orde red The Iltsrals are assumed t. appear In the dedaretlen In increasing

H order.

As given In definition
Attributes: Mn, Max -

IndIa opersilons Ralatland
Special routines: misc, prad

_ _  _ _  _ _ _ _  _ _L _________________ __________________ -—- -



r’~~~ - -

Tartan Reference Manual -20-

1.2.4.. dsalean

true, felse
Attributes: none
Infix operatione logical
Special routines: none

1.2.5. Charact ers
Literal, Quoted characters
Attributes: Mn, Max
In fix operat ions: none
Special rcutine, as for emsneratiens

1.2.5. Latche s

A latch is a simple spinlock for nvtual exclusion. If the lafch is apse, it is avsilabls for slezwe: if it
is dosed, a Lock command will welt on iL

Uter als: open dosed
Attributes: none
Infix operat ions: non.
Speci al routines: Lock, IfLock, Unlock

1.2.7. Arr ays

Uterals: none
Attributes: Ran ge, EltType
Infix opera tions: none
Special operations: subecnlpl~ ,ubarrsy, c.tanatlon, i~psr bound, lower baird

i.~.s. set.
‘ Sets ore booleen vectors on which some addlional operations are defined.

Uteral s: empty
Attributes: EItTyp., MaxSize
Infix operation.: logical
Special operations: si~ scnlpt

1.2.9. Dynemic Types
- 

Uterals: nil
Attributes: Th. named variable does not itself Pieve attr ibutes , but the dynam Ic

var iable that it r fvori, ..a may.
Infix operations: none
Special operations: ~lI denotes whole value of dynamic objacti os dIstinguished from

the rsforence~ A dynamic cen*uctor allocates a new d~~~~~ object
Special routines: none

1.2. 10. Records
Litera ls: none
Attributes: indIvldesliy defined with record type
Inf i x operations: none
Special operations: field selection, canaiructari
Special routines: none

- 

-
_ _--__~- ---- ~~~— -~~~~~~ ~~~~~



— — -- ~~~~~~~~~~~~~~ ~~
—---

~—,---.-—-, ---~-----~~- . ——- -— - —. —,—-—-.--- —— -— .- ——--

‘- - - - — .— .----— —---- - __
~~~

__ -~~~~~~ -~-~._ - -_ ~~~~~~~~~~~~~~~~ -~ -‘- -

Tartan Reference ~4ws~af
1.2.11. Var Ian ts

Uterals: none
Attributes: inctvialj ally defined with vari ant type — -
Infix operations: none
Special operation , variant mj st be designated to reference contents ‘ - - -Special routines: none ‘ -

1 2.12. Strlngs
Quoted strings

Attributes: t..ngth
Infix operations: none
Special operations: subscript, subetrlng. catenation - - ,. ~~~ “

1.2.13. ActIvat ions

Ut.rals: mint / / /
Attributes: none
Infix operations: none
Special operations: create
Special routines: To chang. stats: Actlvst.(A), Suspeni~A), UrfockAndSuspend(A,L),

IkilockAndActivite(A~~ LockAndSuepend(A,L), Lcd AndActivate(A,L),
Tartnin.t.(A)

To ~iery stats: lsMnt(A), lsAct(A), I.Susp(A), lsTervn(A)
To obtin actnams: NameOf(A), Me()
To .ini exceptios: NotUy(A)
Other Prlorlty(A), SatPrlorlty(A), ‘flms(A)

where A is an activation or actneme and L is a latch
Assignmant csus.s the BadAssign oscaption if either the value or the variab le t which it is being

assigned is in a state other than met

1.2.14. Actname,

Utsrals: mint
Attributes: none
I nfix operations: none
Special operatIons: none
Special routines: Same as for activations

1.2.15. FlI.. -

A minimal Input-output facility will be provided.

1.3. Alphabets

The following context-free u.~ slftutlons redIxs the alphabet used In this report to the standard
— r a ~ e ASCII easeL Note that some Identifiers are prs— im,,.t...J a remit.

For the publication character Siàstlb4e the ASCII sblng
lower case t.z içper case A2

C.

‘S

I’
A and
v si
((C

}

I

-

Tartan Reference Manu al -22-

IL Co~ected Synt ax

‘const’ ~ — ‘digit” (. ‘digit” I’ I trw. I lalue nil I dss.d I spec I f .‘u,Iy
I (constn*tor’ I ‘~~~ I ‘qua i~~~ ‘ ‘co~st’ $ ‘type’ • ‘const’ I

.cconstructoq. : (‘esp’r’) I l l ‘ootion’’t ‘ospr ’ },) I — ‘cisa”~~
Cv5r id’ — ‘qual id’ I ‘vsr i~~ (‘actual.’) I v 1 . ‘td’ I ‘o r i~~ (‘r un .’) I Rpe~
‘raflgS ~ ~~ ‘up,’ . . ‘espr~ I ‘type ’
‘Option’ :~~ ‘cOnst’ I ‘r ui’je ’),.

‘ <qual id’ :. { ‘Id> ‘) ‘Id>
‘Id. ~ — defter’ detter or — or diiit>
‘.xor’ ~ — ‘u’o, ’ ‘yr ~~ $ ~jnsp’ ‘corel’ I ~~~~~~~~ 4.jp e cdt’

I unoc’ (‘irer’) I I ‘exer’). ~d> I ‘sip ” ‘binop’ ‘up”
~UflOO~ ~ — • l . ’
‘binop’ ~

. 5 I / I • I — I (I 1 I) I H . l * I A I c I , i d I v l c e r I t
‘lunc calt ’ :— ‘qua Id> (‘actual.’)
‘actuals~ ~ —

‘stmt ’ :— ‘proc c a ’ l ’ : s t m t ’ l pty’ l ’bioc.’
‘yr Id’ ~

— f if ‘isp” tll.n ‘stud’.’ sill ‘isp” 111.0 ‘stmt ’~’ J’ (.lu. ‘st.d ’. N
I c . ‘isp” I ec ‘option’ —) ‘stout’’) ~~~~I wilds ‘ispr’ do (stout ’1’ sd I tsr ‘I~~ ill (rw e’ ds ‘stiut ’1’ oil
I~~slo ’Id’

‘qud ~d’ I rsslpd I assurt ‘expr ’
I ~stMt> { so ‘Id’,’ •‘ ‘stout” })
I crosS. ‘yr id> (‘actu al’)

‘pr oc cdl’ ~ — ‘gust Id’ (‘actuas’)
<block” ~. ‘cod. body’
<cods body’ ~~

— b.~$~i ‘dsf dsd’; I’ ‘s~pd’,0 lIld

‘type’ ~~ flw.d(‘actual.’ I I II..t(‘setuas’ 1$ ilsuls. I laid, I dir I 111.4 ‘actual’)
l .mio(d d ’J l s u w . ’ (~~~-cch.r’),’ J I t expr. . . ex p r ~I sst(‘actual,’ I I str inp(‘actu al.’)
I w’sy (‘run~e”) ii ‘type’ I rucril (‘d.d.r.tion’,’]
I vdlaai ‘dsct railon’ ((on ‘option’ -, ‘type’ Ii
I ~ynon s (type’ I attlvillu. it ‘qua id’ I actremu
I ‘type ~ams’ (‘actuas’) •

~ — 11x.d I NusSIbsit.sot l.luIiI dir l flts l .sl$drIng
J a’uu.m(cid’’) l a’ouiuu~~~~’ct~sr’) ’ J —

I srvw C ‘type “a”ui’,’ ~ of ‘type urns’ I record (‘Id” z (type AIM .’),‘ 3
I vart aM (‘type ,urne’ (on ‘nation’ •) ‘type naum’)‘ 3’

dyniuuic ‘type n.rns’ I .dlvulsn (‘p~a .ii icb,sous
I ‘aiMI Id’ (‘qua ~~,•

‘dsV -dscl~ ~ ‘ucloration’ I ‘mod dsP I ‘routl,i. def’ I “yee del’ I ‘pnsrlc dsfs- $ ‘imply’
I h.,srls (onal Id’ • I soports ‘gust ~~ • I ~~~~~~~~~ ‘Id’ • Osdilo ‘ld> •
I prop ‘proc cal11I’~ 5

<decl ar at ion’ ~~ ‘binding’ ‘Id >’ s ‘lype’ . (. ‘eipr~ • ~ ‘innatug’ (~~~~‘ ‘type nurnu’ 3,’
‘nwd del’ ~ — rn~~~o ‘Id> ‘mod tswt’
(mod siP

~ — ; ‘code body’ I ‘remote Inst.
‘routin. del’ ~ - pros ‘Id’ ‘proc test ’ J lure ‘Id’ ‘f*jnc test’ I p,’s.suu ‘Id’ ‘proc text’

I lure • (‘, op~ I ncp~ 3 — ‘tunc text’
‘f unc text’ ~ — (ctorouas’) ‘Id> , ‘lype’ ; ‘bloc.’ I ‘remote aM’
‘proc t w t ~ ~. (‘formal’ h ‘blocs’ I ‘r.~uoIe 11.1’
‘type del’ .. typo ‘typo ~ame’ ((dsrm als’ I 3° • ‘type’
‘generic dot’ ~- goner mode. ‘Id> (‘formal’ I ‘mod t..t ’ I g.ii..te twit ‘Id> (dormas’ 3 ‘Inc text’

I generic pros ‘Id’ (dori,ials) 3 ‘proc text” I gausris pnseus ‘Id> t ‘tormite’ 3 ‘proc test’
‘remote Inst. :~~ is ‘qua Id> ‘uctuas’ 31 is =~~:~ (‘40)
‘format,. ~ (ding. ‘id> i ‘type nc’
cblndlng> :: ‘imply’ I vu I most I muulfust I rsusdt

SCCIJ~IrI CL A~~~ I ’ - I C - - - , i . , .‘, -- .~ • - 4 - • - (• —

RE P O R1L)ULO ME ~~T A TI O~4 PAGE
- I nf ;FouE co ’u~LET:,:c FoR ’f

• I . k E P O R T kUMU~~ R - . .,
~OVT ACC C~~SION ~~~ 3 R~~C l P I E N T ’ $ C A T A L O G NUMdER

AFOSR -TR- 7 8 - 1 5 2 1
-

-
4. T iTLE (ned £,b:Itl.) -

3. TY P E OF REP O R T C PERIOD COVERED

TARtaN 4 LANGUAGE DESIGN FOR THE IRONMAN -REQUIRE- Interim
-

~~NT: REFERENCE MANUAL • 6~ P [R O R M I O . R E P O R T ~~~~u u 5 E R
- CMU—CS—78—133

7. AuT ,iOR (.) ~ . C O N T R A C T OR G R A N T NUMBER(.)

~fary Shaw, Paul Hilfinger, Win. Wuif
-
F44620--73-c-0074 ‘

~~~~~

- 

5. PERFORMING OR~~A N IZ A T I O H  NAM E AN D A C O R E S S  ID. PROGRA M ELEMEN T . ~~~O)ECT , TASX
- AREA C WORK UNIT NUMOERS’

- 
- Carnegie-~Ie1lon Univ ers~ ty . -• Depart m ent of Computer Sciaace 

- - 

~~~~~~ - 
..

-

-
Pittsburgh , PA 15213 A02466/7 -

- It . CONTROLLING OFF ICE N A M E AND ADDRESS - 12. REpORT OA TE
•Def~nse Advanced Research Projects Agency Ju~~ 1978

-

- -
1400 Wilson Blvd . -

- - 13. NU MSEROF PAGES -
-

• Arling ton , VA ~2209 22
t4. MOH ~~T O R I N G A G E N C (ii AM 6 AODRESS~II dJil.r.nt Item Controlling Olflc.) %~~ SECURITY CLASS. (of (hi. s.poft)

- . -

-
. Air Force Office of Scientific Research (NM) - UNC lASSIF IE D

- - Boiling AFE - DC 20332 -
- is.. O E C L A S S I F I C A T I O N / 0 0 0 N G R A O I N G --

-
, - - - . SCHEDULE

- as. D I S T R I B U T I O N S T A T E M E N T (01 Iii ’ a R.port)
-

-
-

Approved for public release , dis tribution unlim ited

• 17. O I S T R I B U T I O N S T A T E M E N T (of fe. .b.U.ci .nt .r .d In Block 20, II dill .,.ne (fan R.poit) - -

-
- - *5. SUPPLEMENTARY NOICS .

-
- . -

-

- IS. KEY WORDS (Continui. on r.v.,, . aid. II n.e..ao y aid Id.n(lly by block numb.,)

-
. .

-
.

- - . -
C ~~~~,

. .
-

• - -

N
-

-

20. ABSTR ~~~~ (CneuSnUO WI SO~~•lD~ aid. H ,.c...ny aid Id.ntlly by block number)
- -

-

. - ~~Ta rtan is an experiment in ~language design . The goal was to determine .-
-

..
- whether a ‘4simple ”languag e could mee ,t substantially all of the irorunara~ •

-

-
requirement s fQr a çommop -~--~~der prograinm’ing languageY .

. • .
. ‘ - -

- -
t4~~e. ~j-C i~ ,~~J i.’ ~~~ -

-
. - -

~~
- -~~-.

- .W,,~ ~~~~~~~~~~~~~~ c this expetimen’t~ because -w~1believ.ed th~t ai1 the designs
done in the first phase of tI’e DOD effori were too large and too com~le~.

-

,

-
- W-n.--~~~ that complexity~às a serious failure of the desi gf~~; excess cdmplexjt~ ~~~

DD ~~~~ ,~ ~ 473 ~~~~~~~ OF I NO V 1 5 uS O B S O L E T E U~ C1.ASSIFIEt)
S/H 0 l 0 2 0 I 4 560 $ sEc u nuT y C L A S S u r u C A T , O w or THI S P A G E ~~~~~~ o. .gnt...ut)

_ _ -


~~~~~~- - - -

!

_ _ _
C

_ - -  

a - -
INCLAISIFIED . . 

-

‘0. Abstract continued. -

in a programming language can interfere with its use , ev~n t o  the extent that any
beneficial properties are of little consequence. ~~~w~nted to find out whether the
requirements inherently lead to such complexity or ~rhether a substantially simp1~~~L~’7
language would suffice .

~~~Three ground rules drove the experiment. First , no more than two months —— April 1 to
Aay 31 —— would be devoted to the project. Second , the languag e would meet all the
i r orunan requirements except for a few points at which it would anticipate Steelman
requirements . Further , the language would contain no extra features unless they resulted in a
simpler language . Third , simplicity would be the overriding objective .

The resulting language , Tartan , is based on all avai lable info rmat ion , including the design~
already produced. The languag e def ini t ion is presented here; a companios ru-port provides an

-
- overview of the languag e , a number of exam ples , and more expository explanations of some of
the languag e features.

We believe that Tartan is a substantial improvement over the earlier designs , particularly -

its simplicity . There is , of course , no objective measure of simplicity , but the syntax , the
size of the definition , and the number of concepts required are all smaller in Tartan.

Moreover , Tartan substantially meets all c-f the Ironman requirement. (The exceptions lie in~
a few places where we antici pated Steelman requirements and where details are still missing

~from this report.) Thus , we believe that a simple language can meet the ironman requirement.

~rartan is an existence proof of that.

must emphasize again that this effort is an experiment , not an attempt to compete with
DOD contractors . Tartan is ,however , an open challenge to the Phase II contractors : The
language can be at least this simple~ Can ”~~~ do better?

~~~~~~~~~~~~ __

_

_ _ _


